Acumed® is a global leader of innovative orthopaedic and medical solutions.
We are dedicated to developing products, service methods, and approaches that improve patient care.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Acumed Advantage</td>
<td>4</td>
</tr>
<tr>
<td>Key System Features</td>
<td>5</td>
</tr>
<tr>
<td>Indications for Use</td>
<td>6</td>
</tr>
<tr>
<td>Competitive Matrix</td>
<td>7</td>
</tr>
<tr>
<td>The Facts on Surgical Intervention</td>
<td>8</td>
</tr>
<tr>
<td>Foot and Ankle Procedural Volumes</td>
<td>10</td>
</tr>
<tr>
<td>510(k) Information</td>
<td>12</td>
</tr>
<tr>
<td>Dedicated to Excellence</td>
<td>15</td>
</tr>
<tr>
<td>Notes</td>
<td>17</td>
</tr>
</tbody>
</table>
Our mission is to aid the afflicted through the ingenuity of our minds, the labor of our hands, and the compassion of our hearts.
The Acumed Advantage

RATCHETING COMPRESSION PLATING SYSTEM

Fixation of fusions and osteotomies in the foot can be challenging to repair. The following biomechanical performance characteristics must be addressed in any solution designed to correct these portions of the anatomy:

- Joint stabilization
- Compression (initial and retained)
- Cyclic loading
- Ease of application

Various stapling and plating technologies have been designed and implemented to address these challenges. The Acumed Ratcheting Compression Plating System addresses all of these challenges and is unique in its ability to allow the surgeon to generate, incrementally increase, and retain mechanical compression through the unique ratcheting design feature.

THE RATCHETING COMPRESSION PLATE

Primary Design Objectives

- An adjustable device that integrates a plate span, cannulated and threaded legs, and a ratcheting hub into a stand-alone implant.
- Each Ratcheting Compression Plate uses a small ratcheting hub that contains a built-in anti-reversing mechanism. This allows the user to incrementally adjust and lock in the final configuration of the device intraoperatively.
- The cannulated legs fit over .045” guide wires for precise placement.
- During activation, the legs travel in line toward each other, allowing the user to control the direction of compression.
- The plate span comes in six sizes to fit a wide variety of applications.

Design Rationale for System

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>FEATURE</th>
<th>PARAMETER</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Compression is Generated</td>
<td>Controlled Compression</td>
<td>Up to 10.8 pounds</td>
<td>User controls how much compression to apply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acumed Internal Test Report No. TR01279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controlled Reduction</td>
<td>3-4 mm in-line leg travel</td>
<td>Audible click indicates linear leg travel</td>
</tr>
<tr>
<td>How Much Compression is Retained</td>
<td>Anti-reversing Ratchet Hub</td>
<td>Up to 94% retained compression, 5 hours post application</td>
<td>Anti-reversing ratchet hub mechanically locks in compression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acumed Internal Test Report No. TR01279</td>
<td></td>
</tr>
<tr>
<td>Biomechanical Performance</td>
<td>Bending Strength</td>
<td>Bending load to failure</td>
<td>Bending strength greater than competitive bone staple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acumed Internal Test Report No. TR01204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pullout Strength</td>
<td>Force required to pull out</td>
<td>Pullout strength greater than competitive bone staple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fatigue resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acumed Internal Test Report No. TR01204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclic Loading</td>
<td>Fatigue resistance</td>
<td>Greater fatigue strength than competitive bone staple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acumed Internal Test Report No. TR01204</td>
<td></td>
</tr>
</tbody>
</table>
Key Features of the Acumed Ratcheting Compression Plating System

- **Ratchet Hub**: Anti-reversing mechanism allows user to incrementally increase in order to lock in compression
- **Plate Span**: Designed to span the fusion site while sitting flush to the bone
- **Material**: Made from BioDur stainless steel
- **Plate Legs**: Cannulated, slotted, threaded
- **Ratchet Hub** can be disassembled intraoperatively or postoperatively to aid in explantation
- **Laser-welded assembly**
- **Sterile and non-sterile implants**
Indications for Use

The Acumed® Ratcheting Compression Plating System is intended to be used for fixation such as: Lisfranc arthrodesis, mono or bicortical osteotomies in the forefoot, first metatarsophalangeal arthrodesis, Akin osteotomy, midfoot and hindfoot arthrodesis or osteotomies, fixation of osteotomies for hallux valgus treatment (Scarf and Chevron), and arthrodesis of the metatarsocuneiform joint to reposition and stabilize metatarsus primus varus.

MOST COMMON INDICATIONS

1. Calcaneo-cuboid Fusion
2. Talo-navicular Fusion
3. Navicular-cuneiform Fusion
4. Tarsal-metatarsal Fusion
5. Dwyer Osteotomy
6. Lapidus
Competitive Matrix

Where used to treat the indications described on the previous page, it may be possible to use a Ratcheting Compression Plate of similar size instead of the plates listed below:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product</th>
<th>Plate Span</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acumed</td>
<td>Ratcheting Compression Plating System</td>
<td>15 mm Bridge, 11 mm Leg
17 mm Bridge, 14 mm Leg
20 mm Bridge, 17 mm Leg
25 mm Bridge, 17 mm Leg, 20 mm Leg
30 mm Bridge, 25 mm Leg</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Arthrex</td>
<td>Double Compression Plates</td>
<td>2-Hole Plate, 20 mm, 25 mm, 30 mm
3-Hole Plate, 20 mm, 25 mm, 30 mm
4-Hole Plate, Straight, 20 mm, 25 mm
4-Hole Plate, Square, 20 mm, 25 mm, 30 mm
Straight Plate, 30 mm</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Integra</td>
<td>UNI-CP Compression Plate</td>
<td>2-Hole Plate, 17 mm, 20 mm, 25 mm
4-Hole Plate, 20 mm, 25 mm, 30 mm
4-Hole T-Shape Plate, 20 mm
4-Hole U-Shape Plate (3 segments), 17 x 20 mm, 19 x 22.5 mm, 21 x 25 mm</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Wright</td>
<td>Claw II Polyaxial Compression Plating System</td>
<td>2-Hole Plate, 15 mm, 20 mm, 25 mm, 30 mm
4-Hole Plate, 20 mm, 25 mm, 30 mm
Series Plate (2 segments), 20 mm/20 mm, 20 mm/25 mm, 25 mm/25 mm
3-Hole T Plate, 20 mm, 25 mm, 30 mm
4-Hole T Plate, 20 mm, 25 mm, 30 mm
U-Plate (3 segments), 18 mm/18 mm/16 mm, 22 mm/22 mm/19 mm, 30 mm/24 mm/22 mm</td>
<td>Stainless Steel</td>
</tr>
</tbody>
</table>
The Facts on Surgical Intervention with Locking Compression Plates, Screws, and Staples in Treatment of the Foot and Ankle

TECHNOLOGIES

Internal fixation systems are commonly used in the foot and ankle for fusion procedures, osteotomy, stabilization, and fracture repair. These products include plates, screws, pins, wires, and subtalar implants. Most implants are made of stainless steel or titanium. Some plating and screw systems utilize resorbable materials, avoiding the need to remove the implant once healing takes place. Most plating systems now use a locking plate design where the fixation screws lock into the plate to prevent screw backout.

FIXATION METHODS FOR ARTHRODESIS OF THE MIDFOOT AND HINDFOOT

A triple arthrodesis is a fusion of the talocalcaneal (TC), talonavicular (TN), and calcaneocuboid (CC) joint. This is a common procedure for arthritis and/or deformity of these joints when other modalities have failed. The most common complication associated with this modality is a nonunion of one or more of the fusion sites. The most common nonunion site is the TN joint, followed by the CC and TC joints. The most prevalent contributing factors to these nonunions are motion at the fusion site and inadequate preparation of the joint surface.

The standard of care has been to insert two 6.5 mm cannulated lag screws through the calcaneus and into the talus. Screws of a similar diameter are placed obliquely across the CC joint and TN joints. There are technical challenges associated with the placement of these screws on the medial and lateral side of the foot, particularly the screws crossing the CC joint which must avoid the fibula. Locking compression plates offer surgeons an alternative to screw fixation across the CC and TN joint space. This technology is thought to be technically easier than the screw technique and applies compression directly perpendicular to the joint space.

A study by Milshteyn et al. published in 2014 in *Foot and Ankle International* compared the load to failure and stiffness for fixation of the calcaneocuboid joint by 6.5 mm cannulated lag screws and alternatively by locking compression plates (LCP) in cadaveric specimens. The average force to failure and average stiffness in the screw group was found to be significantly less than the locking compression group (average initial stiffness 2X greater for LCP plates and Load to Failure 10X greater for LCP). The mode of failure for the screw group was a loss of fixation due to screw pullout from the cuboid. The LCP failures were due to lengthening of the horizontal limb of the plate resulting from deformation.

Locking compression plates may have a higher implant cost than screws; however, fluoroscopy and operative cost may be reduced due to easier positioning of a plate (as compared to a screw) across the joint space. The locking compression plate may be applied over the CC joint without the need for precise targeting of guidewires and drilling required by the screw technique. The results of this study suggest that locking compression plates may be considered as an alternative to traditional oblique screw placement and may provide better fixation and easier placement across the joint space than lag screws.

MECHANICAL CHARACTERISTICS OF STAPLES COMMONLY USED IN FOOT SURGERY

Fusions of the forefoot, midfoot, and hindfoot may often be addressed using bone staple technology. Bone staples utilized in the majority of foot procedures fall into one of two categories (conventional or memory). Conventional staples achieve compression by mechanically holding the bone ends across the osteotomy site. The compression generated by a conventional staple is dependent upon bending during insertion which results in a permanent deformation of the implant. Memory staples achieve compression when exposed to a particular temperature which causes the staple construct to constrict at the fusion site. The advantage of memory staples is that they are designed to cause compression at the osteotomy site following insertion through heat activation and without permanent (plastic) deformation, which is associated with a weakening material.

A study published by Rethnam et al. in the February 2009 *Journal of Foot and Ankle Research* evaluated the fixation capabilities of conventional staples versus memory staples. Biomechanical testing of these three different staples revealed that the conventional stainless steel staple had the highest fixation stiffness in both bending and torsion, although there was permanent deformation of the conventional staple upon insertion which may cause distraction at the osteotomy site. The memory staples provided similar stiffness and resisted permanent deformation, but were approximately four times less stiff (bending and torsional stiffness) than the conventional staple. The differences in permanent deformation and resistance to bending highlighted by this study suggest surgeons strongly consider the impact these different implants may have in their ability to achieve desired correction and anatomical area of the foot, and they do not assume that all staples offer the same correctional advantages.

DISCUSSION OF TESTING

Biomechanical Testing
During biomechanical testing, a competitive bone staple was used as a test control to evaluate the performance of the Acumed Ratcheting Compression Plate.

Compression Testing—Ratcheting Compression Plate
A testing method which measures the compressive force generated by the device and the retained compressive force five hours later.

- Initial compression measured up to 10.8 pounds
- Retained compression measured up to 94%
- Source: Acumed Internal Test Report No. TR01279

Four-point Bending
A testing method which places a pure bending moment on the device. The results identify device stiffness and peak failure loads.

<table>
<thead>
<tr>
<th>Test</th>
<th>Size</th>
<th>Mode</th>
<th>Acumed Ratcheting Compression Plate</th>
<th>Competitive Bone Staple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Four-Point Bending</td>
<td>S</td>
<td>Stiffness</td>
<td>10 N/mm</td>
<td>10 N/mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak Load</td>
<td>101 N</td>
<td>75 N</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>Stiffness</td>
<td>7.5 N/mm</td>
<td>7 N/mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak Load</td>
<td>85 N</td>
<td>64 N</td>
</tr>
</tbody>
</table>

Cyclic Loading
A testing method which determines the fatigue resistance of a device when subjected to repetitive loading for a large number of cycles.

<table>
<thead>
<tr>
<th>Test</th>
<th>Size</th>
<th>Mode</th>
<th>Acumed Ratcheting Compression Plate</th>
<th>Competitive Bone Staple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Four-Point Bending</td>
<td>S</td>
<td>Runout Load at 1 Million Cycles</td>
<td>30 N</td>
<td>15 N</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td></td>
<td>17 N</td>
<td>13 N</td>
</tr>
</tbody>
</table>

Pullout
A testing method which determines the axial (pullout) holding strength of a device.

<table>
<thead>
<tr>
<th>Test</th>
<th>Mode</th>
<th>Acumed Ratcheting Compression Plate</th>
<th>Competitive Bone Staple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Pullout</td>
<td>Peak Load</td>
<td>72 N</td>
<td>40 N</td>
</tr>
</tbody>
</table>
Many foot and ankle conditions such as arthritis, fractures, dislocations and deformities are successfully managed with conservative treatment. However, when the foot or ankle becomes unstable, and the patient experiences debilitating pain, surgery may be warranted. Fusion may be performed on the ankle joint or joints in the foot to relieve pain when more conservative treatments have failed. Pins, plates, screws or rods may be used to hold the bones in position during fusion. In the case of bone loss, a bone graft may also be necessary.

TRIPLE ARTHRODESIS

Triple arthrodesis is the fusion (arthrodesis) of the three main joints in the hindfoot—not including the ankle. These joints include the talocalcaneal joint, the talonavicular joint, and the calcaneocuboid joint.

Triple arthrodesis is indicated for severe arthritis, instability, or deformity that cannot be controlled with nonsurgical approaches. Other conditions, such as severe flatfoot, abnormal connections between bones, excessively high arches, and joint instability due to neuromuscular disease, can also warrant treatment with fusion.5

The table below presents procedure volumes for triple arthrodesis by age in the United States. From 2006 through 2009, procedures on patients between the ages of 30 and 44 had steep declines in procedural volumes. Conversely, excluding patients under the age of 10, all other patient groups experienced growth in procedural volumes.5

<table>
<thead>
<tr>
<th>ANKLE FUSION BY AGE</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>72</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10 to 29</td>
<td>504</td>
<td>647</td>
<td>550</td>
<td>642</td>
<td>8.38%</td>
</tr>
<tr>
<td>30 to 44</td>
<td>1008</td>
<td>1212</td>
<td>641</td>
<td>561</td>
<td>-17.75%</td>
</tr>
<tr>
<td>45 to 64</td>
<td>3959</td>
<td>4526</td>
<td>4947</td>
<td>4584</td>
<td>5.01%</td>
</tr>
<tr>
<td>>64</td>
<td>2631</td>
<td>2912</td>
<td>2965</td>
<td>2795</td>
<td>2.04%</td>
</tr>
<tr>
<td>Procedure Volume</td>
<td>8174</td>
<td>9297</td>
<td>9103</td>
<td>8582</td>
<td>1.64%</td>
</tr>
</tbody>
</table>

CAGR=Compounded Annual Growth Rate

Patients Treated with Triple Arthrodesis by Age

U.S. Triple Arthrodesis Procedure Volumes

![Graph of U.S. Triple Arthrodesis Procedure Volumes](image-url)
The table below presents expected procedural volumes for triple arthrodesis from 2010 through 2013. Overall, the market for these procedures was anticipated to grow annually at greater than 4%.

Outlook of Triple Arthrodesis Procedures

<table>
<thead>
<tr>
<th></th>
<th>2010E</th>
<th>2011E</th>
<th>2012E</th>
<th>2013E</th>
<th>CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Anticipated Procedure Volumes</td>
<td>10,324</td>
<td>10,952</td>
<td>11,372</td>
<td>11,674</td>
<td>4.18%</td>
</tr>
</tbody>
</table>

Tarsometatarsal Arthrodesis

Tarsometatarsal (TMT) arthrodesis frequently requires fixation of the first, second, third and sometimes all three (or a combination thereof) TMT joints along with their intercuneiform joints. The naviculocuneiform joints may need to be included in this fusion if found to be unstable on examination or radiographically. Successful fusion requires appropriate preparation of the bony surfaces with removal of cartilage, restoration of foot rotation, and rigid stabilization.

The most common area of secondary midfoot arthritis is from Lisfranc injuries, resulting in degeneration of the first, second, and third TMT joints. In the case of primary osteoarthritis, the second and third joints are most commonly involved. Though many plate and screw constructs have been used by surgeons, no one system has proven to be the gold standard. Some studies indicate that plates may provide more stability than lag screws alone.

The table below provides current and expected procedural volumes for fractures of the foot requiring internal fixation. As noted previously, these fractures of the midfoot may lead to the need for arthrodesis, requiring later fusion.

Internal Foot Fracture Procedures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38,863</td>
<td>42,943</td>
<td>47,452</td>
<td>52,435</td>
<td>57,940</td>
<td>64,024</td>
<td>11%</td>
</tr>
</tbody>
</table>

Foot Fracture Internal Fixation Procedures 2013-2018

510(k) Information

Note: Although the Trade/Device Name is identified as the Mediscope Compression Staple and Accessories, ownership of the device and associated 510(k) has been transferred to Acumed LLC and is currently marketed as the Acumed Ratcheting Compression Plating System.

Mediscope Manufacturing, Inc.
% Dr. Diane Sudduth
Senior RA & QA Consultant
8282 Shadow Wood Boulevard
Pompano Beach, Florida 33069

Re: K102387
Trade/Device Name: Mediscope Compression Staple and Accessories
Regulation Number: 21 CFR 888.3030
Regulation Name: Single/Multiple component metallic bone fixation appliances and accessories
Regulatory Class: Class II
Product Code: JDR
Dated: September 16, 2011
Received: September 19, 2011

Dear Dr. Sudduth:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA’s issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act’s requirements, including, but not limited to: registration and listing (21
CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please go to http://www.fda.gov/AboutFDA/CentersOffices/CDRH/CDRHOffices/ucm115809.htm for the Center for Devices and Radiological Health’s (CDRH’s) Office of Compliance. Also, please note the regulation entitled, “Misbranding by reference to premarket notification” (21CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH’s Office of Surveillance and Biometrics/Division of Postmarket Surveillance.

You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.

Sincerely yours,

Mark N. Melkipet
Director
Division of Surgical, Orthopedic and Restorative Devices
Office of Device Evaluation
Center for Devices and Radiological Health

Enclosure
Indications for Use

510(k) Number (if known): K02387

Device Name: Mediscope Asymmetrical Compression Staple and Accessories

The Mediscope Asymmetrical Compression Staple is intended to be used for fixation such as: LisFranc arthrodesis, mono or bi-cortical osteotomies in the forefoot, first metatarsophalangeal arthrodesis, Akin osteotomy, midfoot and hindfoot arthrodeses or ostectomies, fixation of ostectomies for hallux valgus treatment (Scarf and Chevron), and arthrodesis of the metatarsocuneiform joint to reposition and stabilize metatarsus primus varus.

Prescription Use ___X___ AND/OR Over-The-Counter Use ______
(Part 21 CFR 801 Subpart D) (21 CFR 807 Subpart C)

(PLEASE DO NOT WRITE BELOW THIS LINE CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrence of CDRH, Office of Device Evaluation (ODE)

[Signature]

(Division Sign-Off)
Division of Surgical, Orthopedic, and Restorative Devices

510(k) Number K02387
Dedicated to Excellence

From manufacturing to business practices to product innovation, Acumed has an unwavering commitment to excellence. It is reflected in the honors received from industry peers and in the performance of our suite of surgical fixation solutions.

The AME Manufacturing Excellence Award

In 2011, Acumed received the AME Manufacturing Excellence Award, an honor recognizing North American manufacturing sites that have demonstrated operational excellence through continuous improvement, best practices, creativity, and innovation. This award supports AME’s vision, mission and values of inspiring commitment to enterprise excellence through shared learning and access to best practices.

The Association for Manufacturing Excellence is North America’s premier organization for the exchange of knowledge in Organizational Excellence through the implementation of techniques such as Lean Tools, Leadership, Lean Product Development, Lean Supply Chain, and Lean Accounting.

The Frost & Sullivan Manufacturing Leadership 100 Operational Excellence Award

In 2013, Acumed received the Frost & Sullivan Manufacturing Leadership 100 award for Operational Excellence, an honor recognizing the top 100 global manufacturing companies who are shaping the future through projects that deliver outstanding value, innovation, and return on investment.

Frost & Sullivan Manufacturing Leadership 100 is the world’s first member-driven leadership network with knowledge in manufacturing leadership. It was created through a global community of executives working within the manufacturing industry.

A Leader in Product Development and Innovation

Acumed began developing products for managing foot and ankle reconstruction in 2000. Since then, Acumed has grown to become one of the technology leaders in options for reconstruction of foot and ankle. Acumed will continue to devote resources to the development of implants that aid in improving patient outcomes and advancing the field of orthopaedic surgery.
INDUSTRY COMPLIANCE

As a logo member of the Advanced Medical Technology Association (AdvaMed), Acumed endorses the AdvaMed Code of Ethics. Adherence to this Code ensures ethical interaction with healthcare professionals. Acumed requires anti-corruption training for employees interacting with healthcare professionals or government officials (foreign or domestic). In addition, Acumed sales representatives in the United States as well as international distribution partners must complete anti-corruption training programs.

Acumed also supports the United Nations Global Compact and Boston College Center for Corporate Citizenship organizations.

TRANSPARENCY IN BUSINESS PRACTICE

In 2012, the company began preparing to track and report spending in accordance with the Physician Payment Sunshine Act. In order to become an Acumed partner, all distributors must go through a due diligence analysis and a robust training and education program to ensure they share Acumed’s values with respect to anti-corruption and compliance. Acumed maintains ethical behaviors with respect to compliance standards and laws.

GREEN INITIATIVES

Acumed has formed a cross-functional group dedicated to preserving the environment and educating Acumed employees on the benefits of being “green.” The Green Team’s purpose statement is:

We empower Acumed and the global community through education, encouragement, and execution of sustainable business practices. By doing this, we engage our sphere of influence to deliver innovative products that respect the community’s natural systems, support ethical equity, and drive customer loyalty.

The Acumed vision includes being respectful stewards of our local community and global environment, and a large part of this is our commitment to “green” initiatives.

No Bottled Water Pledge

The Green Team sponsored a “no bottled water” pledge program to reduce the consumption of bottled water by Acumed. To date, over 200 employees have pledged to avoid drinking bottled water while on site or traveling domestically on behalf of Acumed. In addition, during on site sales rep trainings, attendees are provided with reusable water bottles.

Papercut

Acumed is committed to reducing paper consumption in our daily business operations. The Green Team drove projects to reduce paper consumption and will expand this to reduce overall landfill waste. Activities include eliminating paper stubs, defaulting to double-sided printing and copying, and providing compostable lunchroom supplies.
These materials contain information about products that may or may not be available in any particular country or may be available under different trademarks in different countries. The products may be approved or cleared by governmental regulatory organizations for sale or use with different indications or restrictions in different countries. Products may not be approved for use in all countries. Nothing contained on these materials should be construed as a promotion or solicitation for any product or for the use of any product in a particular way which is not authorized under the laws and regulations of the country where the reader is located. Specific questions physicians may have about the availability and use of the products described on these materials should be directed to their particular local sales representative. Specific questions patients may have about the use of the products described in these materials or the appropriateness for their own conditions should be directed to their own physician.

Acumed® is a registered trademark of Acumed, LLC.