

Surgical Technique

Acumed® is a global leader of innovative orthopaedic and medical solutions.

Acumed Anatomic Radial Head Solutions 2

The Acumed Anatomic Radial Head Solutions 2 system is designed to provide an anatomic implant to replace the patient's native radial head. Designed in conjunction with Shawn W. O'Driscoll, MD, PhD, the Acumed Anatomic Radial Head Solutions 2 system includes 924 head and stem combinations and system-specific instrumentation to help streamline the surgeon's experience in the operating room.

Indications for Use:

Replacement of the radial head for degenerative or post-traumatic disabilities presenting pain, crepitation, and decreased motion of the radiohumeral and/or proximal radio ulnar joint with joint destruction and/or subluxation, resistance to conservative treatment.

- ▶ Replacement of the radial head for degenerative or post-traumatic disabilities presenting pain, crepitation, and decreased motion at the radiohumeral and/or proximal radioulnar joint with:
 - joint destruction and/or subluxation
 - resistance to conservative treatment
- Primary replacement after fracture of the radial head
- Symptomatic replacement after radial head resection
- Revision following failed radial head arthroplasty

In addition to the Anatomic Radial Head Solutions 2 system, this set may include the Acutrak 2® Mini and Micro instruments and the Radial Head Plating System at the base of the tray to provide multiple solutions all in one set. For the Acutrak 2 Headless Compression Screw System surgical technique, please reference part number SPF00-02. For the Radial Head Plating System surgical technique, please reference part number ELB00-02.

	Definition
Warning	Indicates critical information about a potential serious outcome to the patient or the user.
Caution	Indicates instructions that must be followed in order to ensure the proper use of the device.
Note	Indicates information requiring special attention.

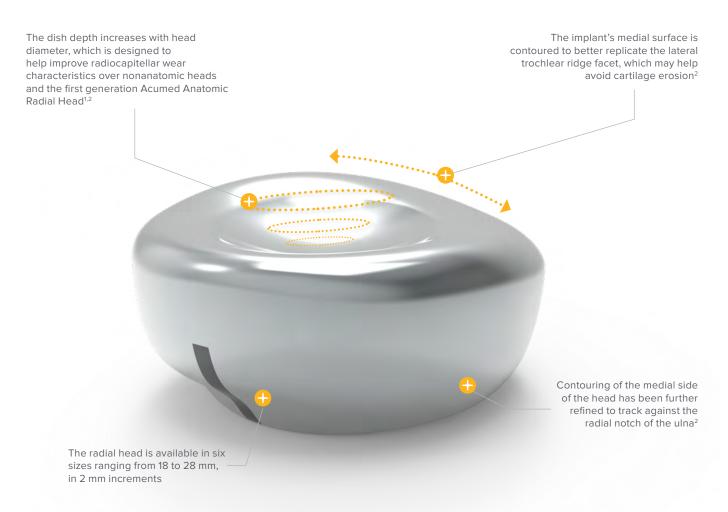
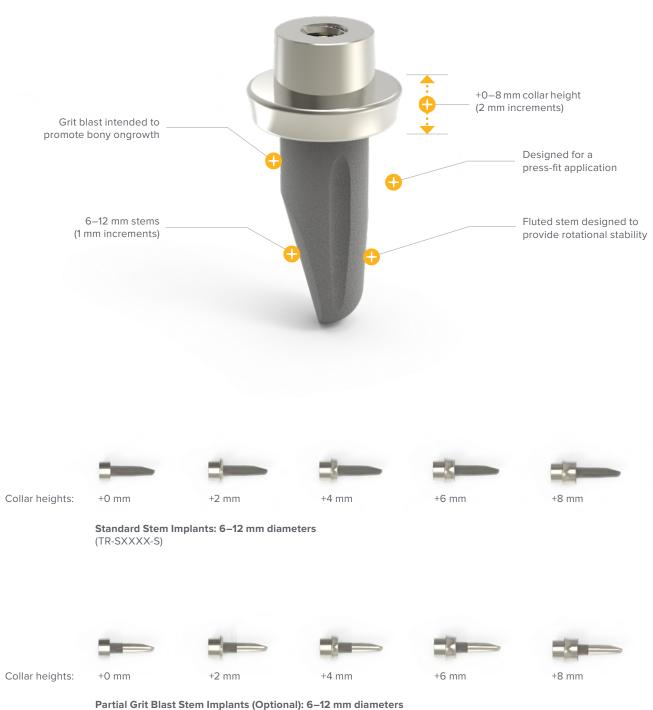


Table of Contents

System Features	2
Surgical Techniques	6
Anatomic Radial Head—Standard Stem	. 6
Anatomic Radial Head—Long Stem	.11
Anatomic Radial Head Removal	16
Ordering Information	. 17
References	.24

System Features

Radial Head Implants



Head Implants: 18-28 mm (5001-05XXX-S)

System Features [continued]


Standard Stem Implants

(50-00XX-S)

System Features [continued]

Long Stem Implants

Long Stem Implants: 6–12 mm diameters (TR-SLXX-S)

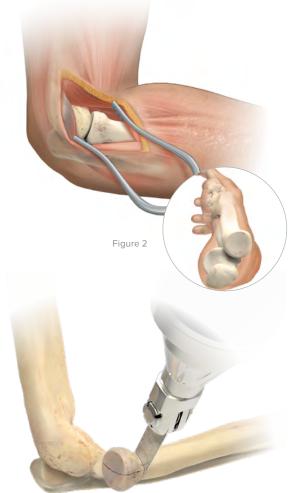
Stem Diameter	Resection Length	Stem Length	Grit Blast Length	Distal Stem Length
6 mm	19 mm	50 mm	18 mm	26.5 mm
7 mm	20.5 mm	52.5 mm	19 mm	28 mm
8 mm	22 mm	55 mm	20 mm	29.5 mm
9 mm	23.5 mm	57.5 mm	21 mm	31.1 mm
10 mm	25 mm	60 mm	22 mm	32.7 mm
11 mm	26.5 mm	62.5 mm	23 mm	34.2 mm
12 mm	28 mm	65 mm	24 mm	35.7 mm

System Features [continued]

Head and Stem Trials

Trial Head: 18–28 mm (TR-TH2XX) Left trial heads are blue, right trial heads are green

Standard Stem Trials: 6–12 mm (TR-TSXX)


Long Stem Trials: 6–12 mm (1 mm increments) (TR-TSLXXX) Left trial stems are blue, right trial stems are green

Anatomic Radial Head—Standard Stem Surgical Technique

Shawn W. O'Driscoll, MD, PhD

Figure 3

Incision and Dissection

There are several exposure options, depending on the integrity of the lateral soft tissues. In fracture-dislocations, the exposure is through the traumatic opening in the ligament complex. For delayed reconstructions, and in those acute cases in which the lateral collateral ligament is intact, the Kaplan interval permits the ligament to be left intact. The deep incision is placed in a line from the lateral epicondyle toward Lister's tubercle, with the forearm in neutral rotation. Proximally, the extensor carpi radialis longus (ECRL) origin is released with the anterior capsule to permit direct access to the front of the radial head.

Radial Head Resection

Resect the radial head with a microsagittal saw at the distal limit of the fracture, or as proximal as possible without leaving a significant collar defect. A maximum length of 17 mm of the radius can be replaced. This 17 mm includes the radius length reamed with the collar reamer in Step 4. If longer than 17 mm resection is needed, long stems are available. A minimum resection of 9 mm is required to accommodate the shortest implant height.

Determine Stem Diameter

Insert the 5.5 mm Quick Release Awl (TR-0206) to the depth mark to initially enter the canal. Assemble the Ratcheting T-Handle (BG-8043) to the Standard Stem Reamer 6 mm (80-1606) and prepare the canal for the stem using sequentially larger Standard Stem Reamers (80-1606 through 80-1612) until a "cortical chatter" and a tight fit are achieved. The proper reaming depth is achieved when the laser mark band on the reamer is flush with the level of resection. A Radius Retractor (80-1509) is available to elevate the radius.

Note: The standard stem reamers are 0.5 mm undersized from the implants.

Warning: The Standard Stem Reamers (80-16XX) are not intended to be used under power. Using the reamers under power may result in fracturing the radial canal.

Note: Confirm the fit by rotating the reamer inside the forearm. If the forearm rotates when the reamer is turned, a sufficiently tight fit has been achieved.

Ream With Collar Reamer

Select the Collar Reamer (TR-CRAXX) that matches the stem diameter determined by the reamer in the previous step. Power ream the collar to create a surface with at least 60% of the radial shaft in contact with the reamer.

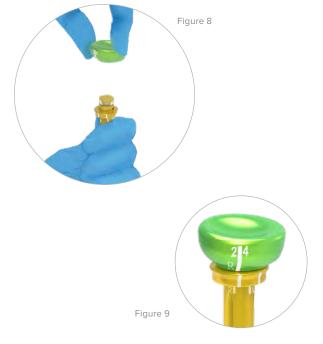
The risk of fracturing the radius can be lessened by reaming initially in the reverse direction, such that the reamer acts more as a power rasp. If there is concern about risk of fracture (e.g. if a notch exists), a cerclage wire can be placed around the collar and removed after inserting the prosthesis.

Caution: Avoid fracturing the radial collar, which can occur if the reamer catches on irregular bone in the fracture surface.

Figure 6

Determine Head Diameter

Determine head diameter by placing the resected head upside down in the sizing pockets on the ARH Solutions 2 Impactor Block (80-3058). If between sizes, select the smaller diameter.

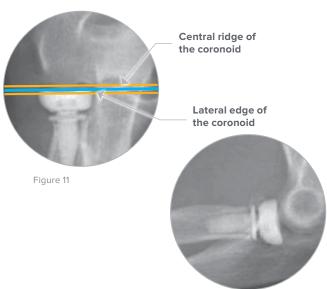

Determine Collar Height

Determining the appropriate collar height is critical to restoring the joint space. It must be done with the ulnohumeral joint reduced, which can best be performed by compressing the olecranon against the distal humerus with the elbow flexed 90°. It is critical that the coronoid contacts the trochlea during this process.

Insert the +0 end of the ARH Solutions 2 Height Gauge +0/+2 mm (80-3649) and determine if the gauge simultaneously contacts the resected radius and capitellum. If there is no contact, sequentially insert a taller size until it contacts the radius and the capitellum.

The number on the height gauges (+0, 2, 4, 6, and 8 mm) will correspond to the stem's collar height.

Warning: If between sizes, select the shorter height. Implantation of components that are too large may result in a joint that is "overstuffed."


Select Trial Implants and Assemble

After selecting the Trial Head (TR-TH2XX) and Trial Stem (TR-TSXX or TR-TSXXX), align laser marks on the head and stem and assemble using hand pressure. The stem laser mark is indicated Left or Right ("L" or "R") for proper orientation. If the trial head and stem are difficult to connect, apply saline solution prior to assembling.

Note: Left-specific trials are blue and right-specific trials are green

Figure 12

Trial Implant Insertion

Rotate the forearm to a neutral position. Mark the lateral aspect of the radial neck with a cautery, in line with Lister's tubercle.

Insert the trial implant into the radius. Ensure that the laser marks on the head and stem are aligned with the cautery mark. Lister's tubercle may also be used as a landmark for laser mark orientation.

Check for proper articulation with the capitellum and the coronoid (figures 11 and 12). The line along the articular margin of the radial head (blue line) should fall between parallel lines that pass through the central ridge and lateral edge of the coronoid (gold lines).³ Check for proper articulation with the capitellum and the coronoid. The coronoid needs to be in contact with the trochlea to ensure proper positioning of the trial.

Warning: Trial components are NOT designed to be implanted.

Note: The trial stem diameters are 0.5 mm undersized from the reamers for ease of insertion.

Implant Assembly

After determining the correctly sized head and stem with the trials, align the laser lines on both the implant head and stem, press them together by hand, and then place the assembled implant stem into the appropriate size hole in the ARH Solutions 2 Impactor Block (80-3058). Ensure that the laser marks are still aligned, then impact the head and stem together with several strong strikes with the Head Impactor (TR-MS05) and a mallet to engage the ARH Solutions 2 Impactor Block.

Implant Insertion

Insert the implant into the radius using the Head Impactor (TR-MS05) and a mallet. Ensure that the laser marks on the head/stem are aligned with the lateral aspect of the radius when the forearm is in neutral position. Lister's tubercle may also be used as a landmark for laser mark orientation.

- Confirm the implants are the appropriate sizes. Consider using the contralateral X-ray as a reference point.
- Check for proper articulation with the capitellum and the coronoid (figures 11 and 12). The line along the articular margin of the radial head (blue line) should fall between parallel lines that pass through the central ridge and lateral edge of the coronoid (gold lines).³

10b Alternative Implant Insertion With Bone Cement

If desired, the prosthesis may be cemented into position. The same anatomic landmarks as previously described are used to ensure proper alignment. Select an implant that is one size smaller than the reamer to allow for a 0.5 mm cement mantle. A higher viscosity cement should be used to allow precoating of the stem prior to implantation. The precoat is applied while the cement is malleable. Prior to stem insertion, malleable cement may be inserted into the radial canal. Insert into its anatomic position and hold the elbow in a flexed position while the cement hardens. Check for cement extrusion around the radial neck and remove if present. Once the cement is firm and cooled (per the cement IFU), the elbow can be moved freely as needed.

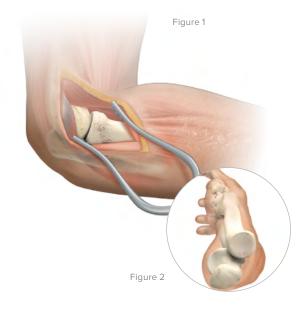
Optionally, a cement restrictor (not available through Acumed) may be inserted approximately 1 cm distal to the tip of the implant to prevent extravasation down the intramedullary canal of the radius and to improve the cement mantle.

Postoperative Protocol

Note: The following protocol may be replaced with an alternative protocol at the performing surgeon's discretion.

Postoperative management is determined by the overall management of the elbow and limb, as though the radial head had never been fractured. For isolated fractures of the radial head and collar without ligament injury, early motion is commenced in flexion and extension as well as pronation and supination. This usually begins within the first few days after surgery.

Note: An ARH Removal Tool Shaft (80-2018) and Cross Bar (80-1771) are available in the system for stem removal if needed. For removal instructions, reference the Anatomic Radial Head and Stem Removal technique on page 22.


Anatomic Radial Head—Long Stem Surgical Technique

Shawn W. O'Driscoll, MD, PhD

Stem Diameter	Resection Length	Long Stem Length
6 mm	19 mm	50 mm
7 mm	20.5 mm	52.5 mm
8 mm	22 mm	55 mm
9 mm	23.5 mm	57.5 mm
10 mm	25 mm	60 mm
11 mm	26.5 mm	62.5 mm
12 mm	28 mm	65 mm

Introduction

This technique typically requires two resection steps to accommodate the 10° collar/shaft angle and proportional change in collar length with stem diameter. The first resection clears a path to insert the reamer and the second resection establishes the appropriate insertion depth for the final stem size. If using the 6 mm stem, only one resection is required. If the reamer's final size is larger than 6 mm (7, 8, 9, 10, 11, or 12 mm), a second cut and subsequent reaming to the instrument's laser mark band accommodates the respective size of the implant stem. Refer to the Reference Chart for the amount of resection that corresponds with the long stem's diameter and length.



Incision and Dissection

There are several exposure options, depending on the integrity of the lateral soft tissues. In fracture-dislocations, the exposure is through the traumatic opening in the ligament complex. For delayed reconstructions, and in those acute cases in which the lateral collateral ligament is intact, the Kaplan interval permits the ligament to be left intact. The deep incision is placed in a line from the lateral epicondyle toward Lister's tubercle, with the forearm in neutral rotation. Proximally, the extensor carpi radialis longus (ECRL) origin is released with the anterior capsule to permit direct access to the front of the radial head.

Note: Stem removal can be very difficult if a fully porous coated surface is well ingrown with bone. Slap hammers and vice grips may be useful. If revising an Acumed Anatomic Radial Head and Stem, an ARH Removal Tool Shaft (80-2018) and Cross Bar (80-1771) are available for the stem. A removal technique is available on page 22. After stem removal, find the radial canal distal to the end of the primary stem before reaming. This can be done with a small pointed device such as a Rush reamer.

Note: Image intensification (fluoroscopy) can be helpful in avoiding cortical perforation.

Radial Head/Collar Resection

Place the Long Stem Resection Guide (80-1512)
against the capitellum and in line with the radial collar.

- Score the bone with a blade. If there is no bone at the 6 mm level, proceed with sequential reaming.
- Resect at the 6 mm level within the resection guide using an Osteotomy Saw Blade Hub Style L or S (ZMS-3514 or SM-3514) or 0.6 mm thick blade. This resection level will remove enough collar to allow the reamers to be directly inserted into the radial canal.

Note: The long stem reamers are 0.25 mm undersized from the implants.

Determine Stem Diameter

The Radius Retractor (80-1509) is available to elevate the radius. Use the 5.5 mm Quick Release Awl (TR-0206) to initially enter the canal.

- ▶ Starting with the 6 mm Long Stem Reamer (80-1706), prepare the canal for the stem using sequentially larger reamers until a "cortical chatter" and a tight fit are achieved.
- If the final reamer diameter size is greater than 6 mm, re-cut the radial collar using the Long Stem Resection Guide and microsagittal saw to the length corresponding to the final reamer diameter size.
- Re-insert the final size reamer until the laser mark band is even with the level of resection.

Note: Confirm the fit by rotating the reamer inside the forearm. If the forearm rotates when the reamer is turned, a sufficiently tight fit has been achieved.

Warning: The Long Stem Reamers (80-17XX) are not intended to be used under power. Using them under power may result in over-reaming or fracturing the radial canal.

Determine Head Diameter

Determine head diameter by placing the resected head upside down in the sizing pockets on the ARH Solutions 2 Impactor Block (80-3058). If between sizes, select the smaller diameter.

Select Trial Implants and Assemble

After selecting the Trial Head (TR-TH2XX) and Trial Morse Taper Long Stem (TR-TSLXXX), align the laser marks on the head and stem and assemble using hand pressure. The stem laser mark is indicated Left or Right ("L" or "R") for proper orientation. If the trial head and stem are difficult to connect, apply saline solution prior to connecting.

Note: Left-specific trials are blue and right-specific trials are green.

Trial Implant Insertion

Rotate the forearm to a neutral rotation. Mark the lateral aspect of the radial collar with the cautery (in line with Lister's tubercle). The stem laser mark is indicated Left or Right ("L" or "R") for proper orientation. Insert the trial into the radius. Insert to the level of the laser mark (line around stem body) or when the appropriate reduction is achieved.

Note: If restoration length is too long, additional reaming and reinsertion of the trial is suggested.

Ensure the dotted laser mark on the stem is aligned with the cautery mark. The Morse Taper Long Stem Alignment Guide (80-2127) can be used to help with alignment during insertion. Check for proper articulation with the capitellum and the coronoid. The coronoid needs to be in contact with the trochlea to ensure proper positioning of the trial.

Warning: Trial components are NOT designed to be implanted.

Note: The long stem trials are the same diameter as the reamers.

Caution: Do NOT impact the trial long stem into the canal. If the trial cannot be placed at the insertion line without impaction, then recheck the reaming depth or resection cut.

Implant Assembly

After determining the correct size head and stem with the trials, place the implant stem into the long stem impaction site on the ARH Solutions 2 Impactor Block (80-3058). Align laser marks and assemble the head and stem using hand pressure, then lock the Morse taper engagement between the head and stem using the Head Impactor (TR-MS05) and a mallet.

Note: The long stem implants are not packaged in separate left and right specific packaging. The "Left" and "Right" designations are marked on the stem.

Implant Insertion

Insert the implant into the radius using the Head Impactor (TR-MS05) and a mallet. Insert to the level of the laser mark (line around stem body) or when the appropriate reduction is achieved. Ensure that the dotted laser mark on the stem is aligned with the cautery marking on the lateral aspect of the radius when the forearm is in neutral rotation. The Morse Taper Long Stem Alignment Guide (80-2127) can be used to help with alignment during insertion. Check for proper articulation with the capitellum and the coronoid. Lister's tubercle may also be used as a landmark for laser mark orientation.

Note: The long-stem implants are 0.25 mm larger than the reamers and trials.

Alternative Implant Insertion With Bone Cement

If desired, the prosthesis may be cemented into position. The same anatomic landmarks as previously described are used to ensure proper alignment. Select an implant that is one size smaller than the reamer to allow for a 0.5 mm cement mantle. A higher viscosity cement should be used to allow precoating of the stem prior to implantation. The precoat is applied while the cement is malleable. Prior to stem insertion, malleable cement may be inserted into the radial canal. Insert into its anatomic position and hold the elbow in a flexed position while the cement hardens. Insert to the level of the first dot below the laser mark (line around the stem body) or when the appropriate reduction is achieved (Figure 12). Check for cement extrusion around the radial neck and remove if present. Once the cement is firm and cooled (per the cement IFU), the elbow can be moved freely as needed.

Optionally, a cement restrictor (not available through Acumed) may be inserted approximately 1 cm distal to the tip of the implant to prevent extravasation down the intramedullary canal of the radius and to improve the cement mantle.

Postoperative Protocol

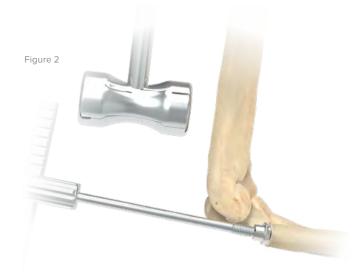
Note: The following protocol may be replaced with an alternative protocol at the performing surgeon's discretion.

Postoperative management is determined by the overall management of the elbow and limb, as though the radial head had never been fractured. For isolated fractures of the radial head and collar without ligament injury, early motion is commenced in flexion and extension as well as pronation and supination. This usually begins within the first few days after surgery.

Note: An ARH Removal Tool Shaft (80-2018) and Cross Bar (80-1771) are available in the system for stem removal if needed. For removal instructions, reference the Anatomic Radial Head and Stem Removal technique on page 22.

Anatomic Radial Head and Stem Removal Surgical Technique

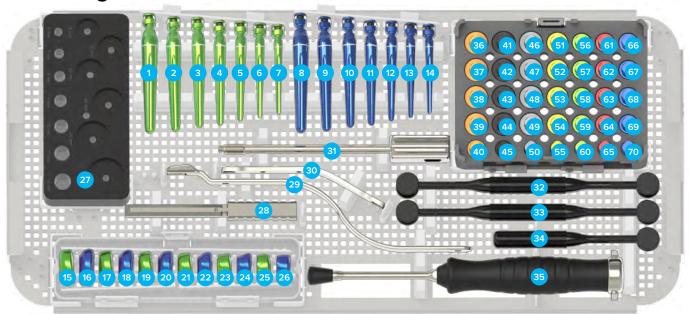
Shawn W. O'Driscoll, PhD, MD



Head Removal

To remove the radial head prosthesis from the standard stem, place an osteotome in the Morse taper gap between the head and the stem and tap with a mallet.

If removing a +0 mm collar standard stem (TR-SXX00-S) where there is no Morse taper gap, attach a vice grip to the head and then attach a slap hammer to the vice grip. Use the slap hammer to separate the implant head from the stem.

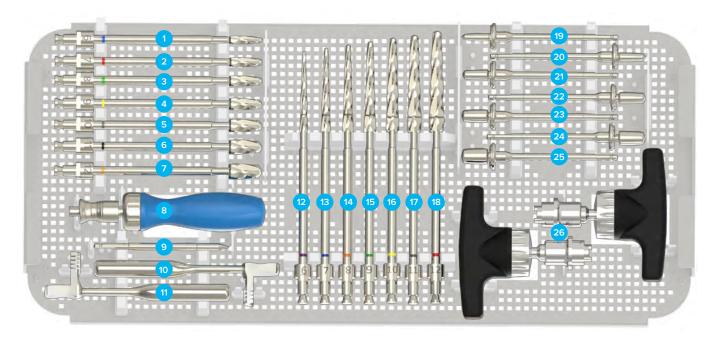

To remove the radial head prosthesis from a long stem (TR-SLXX-S), use the same vice grip technique as above.

Stem Removal

To remove a standard stem or a long stem from the canal, thread the ARH Removal Tool Shaft (80-2018) into the stem. Insert the Cross Bar (80-1771) through the handle of the ARH Removal Tool Shaft. Using a mallet, tap the cross bar until the stem is removed from the canal.

Ordering Information

Trav Components

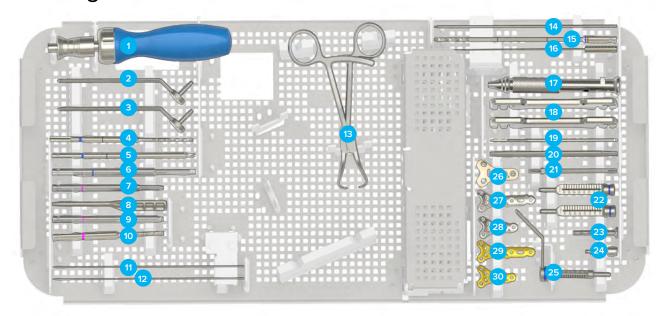

Trial	II.o	nα	Stems	

12 mm Right Trial Long Stem	TR-TSL12R
2 11 mm Right Trial Long Stem	TR-TSL11R
3 10 mm Right Trial Long Stem	TR-TSL10R
4 9 mm Right Trial Long Stem	TR-TSL09R
5 8 mm Right Trial Long Stem	TR-TSL08R
6 7 mm Right Trial Long Stem	TR-TSL07R
7 6 mm Right Trial Long Stem	TR-TSL06R
8 12 mm Left Trial Long Stem	TR-TSL12L
9 11 mm Left Trial Long Stem	TR-TSL11L
10 mm Left Trial Long Stem	TR-TSL10L
9 mm Left Trial Long Stem	TR-TSL09L
12 8 mm Left Trial Long Stem	TR-TSL08L
7 mm Left Trial Long Stem	TR-TSL07L
6 mm Left Trial Long Stem	TR-TSL06L

Trial Heads

15 28 mm Trial Head, Left	TR-TH28L
16 28 mm Trial Head, Right	TR-TH28R
7 26 mm Trial Head, Left	TR-TH26L
18 26 mm Trial Head, Right	TR-TH26R
19 24 mm Trial Head, Left	TR-TH24L
20 24 mm Trial Head, Right	TR-TH24R
21 22 mm Trial Head, Left	TR-TH22L
22 22 mm Trial Head, Right	TR-TH22R
23 20 mm Trial Head, Left	TR-TH20L
24 20 mm Trial Head, Right	TR-TH20R
25 18 mm Trial Head, Left	TR-TH18L
26 18 mm Trial Head, Right	TR-TH18R

nstruments			
27 ARH Solutions 2 Impactor Block	80-3058	ARH Solutions 2 Height Gauge +0/+2 mm	80-364
²⁸ Cross Bar	80-1771	ARH Solutions 2 Height Gauge +4/+6 mm	80-365
29 Radius Retractor	80-1509	ARH Solutions 2 Height Gauge +8 mm	80-365
Morse Taper Long Stem Alignment Guide	80-2127	35 Head Impactor	TR-MS0
31 ARH Removal Tool Shaft	80-2018		
Trial Standard Stems			
36 12 mm x 8 mm Trial Stem	TR-TS128	9 mm x 2 mm Trial Stem	TR-TS
37 12 mm x 6 mm Trial Stem	TR-TS126	9 mm x 0 mm Trial Stem	TR-TS
38 12 mm x 4 mm Trial Stem	TR-TS124	56 8 mm x 8 mm Trial Stem	TR-TS
39 12 mm x 2 mm Trial Stem	TR-TS122	8 mm x 6 mm Trial Stem	TR-TS
40 12 mm x 0 mm Trial Stem	TR-TS120	58 8 mm x 4 mm Trial Stem	TR-TS
41 11 mm x 8 mm Trial Stem	TR-TS118	59 8 mm x 2 mm Trial Stem	TR-TS
42 11 mm x 2 mm Trial Stem	TR-TS116	60 8 mm x 0 mm Trial Stem	TR-TS
43 11 mm x 4 mm Trial Stem	TR-TS114	61 7 mm x 8 mm Trial Stem	TR-TS
44 11 mm x 6 mm Trial Stem	TR-TS112	62 7 mm x 6 mm Trial Stem	TR-TS
45 11 mm x 0 mm Trial Stem	TR-TS110	63 7 mm x 4 mm Trial Stem	TR-TS
46 10 mm x 8 mm Trial Stem	TR-TS108	64 7 mm x 2 mm Trial Stem	TR-TS
47 10 mm x 6 mm Trial Stem	TR-TS106	65 7 mm x 0 mm Trial Stem	TR-TS
48 10 mm x 4 mm Trial Stem	TR-TS104	66 6 mm x 8 mm Trial Stem	TR-TS
49 10 mm x 2 mm Trial Stem	TR-TS102	67 6 mm x 6 mm Trial Stem	TR-TS
50 10 mm x 0 mm Trial Stem	TR-TS100	68 6 mm x 4 mm Trial Stem	TR-TS
9 mm x 8 mm Trial Stem	TR-TS98	69 6 mm x 2 mm Trial Stem	TR-TS
9 mm x 6 mm Trial Stem	TR-TS96	6 mm x 0 mm Trial Stem	TR-TS



Tray Components

Instruments

1 Standard Stem Reamer 6 mm	80-1606
2 Standard Stem Reamer 7 mm	80-1607
3 Standard Stem Reamer 8 mm	80-1608
4 Standard Stem Reamer 9 mm	80-1609
5 Standard Stem Reamer 10 mm	80-1610
6 Standard Stem Reamer 11 mm	80-1611
7 Standard Stem Reamer 12 mm	80-1612
8 Medium Ratcheting Handle	80-0663
9 5.5 mm Quick Release Awl	TR-0206
Long Stem Resection Guide 7 mm, 9 mm, 11 mm	80-3658
Long Stem Resection Guide 6 mm, 8 mm, 10 mm, 12 mm	80-1512

12 Long Stem Reamer 6 mm	80-1706
13 Long Stem Reamer 7 mm	80-1707
Long Stem Reamer 8 mm	80-1708
15 Long Stem Reamer 9 mm	80-1709
16 Long Stem Reamer 10 mm	80-1710
17 Long Stem Reamer 11 mm	80-1711
18 Long Stem Reamer 12 mm	80-1712
9 6 mm Collar Reamer	TR-CRA06
7 mm Collar Reamer	TR-CRA07
21 8 mm Collar Reamer	TR-CRA08
9 mm Collar Reamer	TR-CRA09
23 10 mm Collar Reamer	TR-CRA10
24 11 mm Collar Reamer	TR-CRA11
25 12 mm Collar Reamer	TR-CRA12
Ratcheting T-Handle	BG-8043

	\sim .
Iran	Components
IIav	COTTIBOTIETIES

Instruments

instrainents			
1 Medium Ratcheting Handle	80-0663	14 .054" x 6" Guide Wire	WS-1406ST
2 .035" Parallel Wire Guide Assembly	AT2-3500	15 2.0 mm Quick Release Drill	80-0318
.045" Parallel Wire Guide Assembly	AT2-4500	16 .035" Depth Probe	80-0357
Mini Acutrak 2® Drill, Long	AT2M-L1813	17 Cruciform Driver Handle	MS-2210
Mini Acutrak 2 Drill	AT2M-1813	18 Small Plate Benders	80-0363
2.0 mm Cannulated Quick Release Driver Tip	HT-1120	19 2.3 mm Bone Tap	80-0362
1.5 mm Cannulated Quick Release Driver Tip	HT-0915	20 1.5 mm Hex Driver Tip (small shaft)	HPC-0015
AT2 Screw Sizer	AT2-SMCZ	21 Plate Tack	80-0248
Micro Acutrak 2 Drill	AT2-1509	2.0 mm Locking Drill Guide 4–32 mm	80-0249
Micro Acutrak 2 Drill, Long	80-0100	23 2.3 mm Screw Sleeve	MS-SS23
.035" x 5.75" ST Guide Wire	WS-0906ST	24 Targeting Guide Locking Bolt	80-0247
.045" x 6" ST Guide Wire	WS-1106ST	2.0 mm Non-Locking Drill Guide Assembly 4–32 mm	80-0394
Small Pointed Reduction Forceps	OW-1200		
adial Head Plating			
Locking Radial Head Plate Targeting Guide	80-0246	Locking Radial Head Plate 5 Hole Standard Curvature	70-0098
Locking Radial Head Plate 5 Hole Small Curvature	70-0100	Locking Radial Head Plate 3 Hole Standard Curvature	70-0097
Locking Radial Head Plate 3 Hole Small Curvature	70-0099		

Sterile Implants*			
ARH Solutions 2 Head Implants			
ARH Solutions 2 Head 18 mm, Left	5001-0518L-S	ARH Solutions 2 Head 24 mm, Left	5001-0524L-S
ARH Solutions 2 Head 18 mm, Right	5001-0518R-S	ARH Solutions 2 Head 24 mm, Right	5001-0524R-S
ARH Solutions 2 Head 20 mm, Left	5001-0520L-S	ARH Solutions 2 Head 26 mm, Left	5001-0526L-S
ARH Solutions 2 Head 20 mm, Right	5001-0520R-S	ARH Solutions 2 Head 26 mm, Right	5001-0526R-S
ARH Solutions 2 Head 22 mm, Left	5001-0522L-S	ARH Solutions 2 Head 28 mm, Left	5001-0528L-S
ARH Solutions 2 Head 22 mm, Right	5001-0522R-S	ARH Solutions 2 Head 28 mm, Right	5001-0528R-S
Standard Stem Implants			
6 mm x 0 mm Stem	TR-S0600-S	9 mm x 6 mm Stem	TR-S0906-S
6 mm x 2 mm Stem	TR-S0602-S	9 mm x 8 mm Stem	TR-S0908-S
6 mm x 4 mm Stem	TR-S0604-S	10 mm x 0 mm Stem	TR-S1000-S
6 mm x 6 mm Stem	TR-S0606-S	10 mm x 2 mm Stem	TR-S1002-S
6 mm x 8 mm Stem	TR-S0608-S	10 mm x 4 mm Stem	TR-S1004-S
7 mm x 0 mm Stem	TR-S0700-S	10 mm x 6 mm Stem	TR-S1006-S
7 mm x 2 mm Stem	TR-S0702-S	10 mm x 8 mm Stem	TR-S1008-S
7 mm x 4 mm Stem	TR-S0704-S	11 mm x 0 mm Stem	TR-S1100-S
7 mm x 6 mm Stem	TR-S0706-S	11 mm x 2 mm Stem	TR-S1102-S
7 mm x 8 mm Stem	TR-S0708-S	11 mm x 4 mm Stem	TR-S1104-S
8 mm x 0 mm Stem	TR-S0800-S	11 mm x 6 mm Stem	TR-S1106-S
8 mm x 2 mm Stem	TR-S0802-S	11 mm x 8 mm Stem	TR-S1108-S
8 mm x 4 mm Stem	TR-S0804-S	12 mm x 0 mm Stem	TR-S1200-S
8 mm x 6 mm Stem	TR-S0806-S	12 mm x 2 mm Stem	TR-S1202-S
8 mm x 8 mm Stem	TR-S0808-S	12 mm x 4 mm Stem	TR-S1204-S
9 mm x 0 mm Stem	TR-S0900-S	12 mm x 6 mm Stem	TR-S1206-S
9 mm x 2 mm Stem	TR-S0902-S	12 mm x 8 mm Stem	TR-S1208-S
9 mm x 4 mm Stem	TR-S0904-S		

Sterile Implants*				
Partial Grit Blast Standard Stems (Optional)				
6 mm x 0 mm ARH Partial Blast Stem	50-0056-S	10 mm x 0 mm ARH Partial Blast Stem	50-0076-S	
6 mm x 2 mm ARH Partial Blast Stem	50-0057-S	10 mm x 2 mm ARH Partial Blast Stem	50-0077-S	
6 mm x 4 mm ARH Partial Blast Stem	50-0058-S	10 mm x 4 mm ARH Partial Blast Stem	50-0078-S	
6 mm x 6 mm ARH Partial Blast Stem	50-0059-S	10 mm x 6 mm ARH Partial Blast Stem	50-0079-S	
6 mm x 8 mm ARH Partial Blast Stem	50-0060-S	10 mm x 8 mm ARH Partial Blast Stem	50-0080-S	
7 mm x 0 mm ARH Partial Blast Stem	50-0061-S	11 mm x 0 mm ARH Partial Blast Stem	50-0109-S	
7 mm x 2 mm ARH Partial Blast Stem	50-0062-S	11 mm x 2 mm ARH Partial Blast Stem	50-0110-S	
7 mm x 4 mm ARH Partial Blast Stem	50-0063-S	11 mm x 4 mm ARH Partial Blast Stem	50-0111-S	
7 mm x 6 mm ARH Partial Blast Stem	50-0064-S	11 mm x 6 mm ARH Partial Blast Stem	50-0112-S	
7 mm x 8 mm ARH Partial Blast Stem	50-0065-S	11 mm x 8 mm ARH Partial Blast Stem	50-0113-S	
8 mm x 0 mm ARH Partial Blast Stem	50-0066-S	12 mm x 0 mm ARH Partial Blast Stem	50-0114-S	
8 mm x 2 mm ARH Partial Blast Stem	50-0067-S	12 mm x 2 mm ARH Partial Blast Stem	50-0115-S	
8 mm x 4 mm ARH Partial Blast Stem	50-0068-S	12 mm x 4 mm ARH Partial Blast Stem	50-0116-S	
8 mm x 6 mm ARH Partial Blast Stem	50-0069-S	12 mm x 6 mm ARH Partial Blast Stem	50-0117-S	
8 mm x 8 mm ARH Partial Blast Stem	50-0070-S	12 mm x 8 mm ARH Partial Blast Stem	50-0118-S	
9 mm x 0 mm ARH Partial Blast Stem	50-0071-S			
9 mm x 2 mm ARH Partial Blast Stem	50-0072-S			
9 mm x 4 mm ARH Partial Blast Stem	50-0073-S			
9 mm x 6 mm ARH Partial Blast Stem	50-0074-S			
9 mm x 8 mm ARH Partial Blast Stem	50-0075-S			

Sterile Implants*			
Long Stem Implants			
6 mm Morse Taper Long Stem	TR-SL06-S	10 mm Morse Taper Long Stem	TR-SL10-S
7 mm Morse Taper Long Stem	TR-SL07-S	11 mm Morse Taper Long Stem	TR-SL11-S
8 mm Morse Taper Long Stem	TR-SL08-S	12 mm Morse Taper Long Stem	TR-SL12-S
9 mm Morse Taper Long Stem	TR-SL09-S		
Additional Components			
Instruments			
ARH Solutions 2 Std Stem X-Ray Template	90-0051	Morse Taper Long Stem Alignment Guide	80-2127
ARH Solutions 2 Long Stem X-Ray Template	90-0050		
Tray			
ARH Solutions 2 Case Base	80-3640	ARH Solutions 2 Trial Heads Caddy Assembly	80-3784
ARH Solutions 2 Case Lid	80-3641	ARH Solutions 2 Standard Stem Caddy Assembly	80-3783
ARH Solutions 2 Tray 1	80-3642	ARH Solutions 2 LRHP Screws Caddy Assembly	80-3785
ARH Solutions 2 Tray 2	80-3643		
ARH Solutions 2 Tray 3	80-3646		
Optional Components			

ZMS-3514

Osteotomy Saw Blade Hub Style S**

Osteotomy Saw Blade Hub Style L**

Note: To learn more about the full line of Acumed innovative surgical solutions, please contact your authorized Acumed distributor, call 888.627.9957, or visit www.acumed.net.

SM-3514

^{*}Please note: Implants are provided sterile-packed, separate from the system tray.

^{**}Not available in all markets.

References

- 1. Sahu D, Holmes DM, Fitzsimmons JS, et al. Influence of radial head prosthesis design on radiocapitellar joint contact mechanics. *J Shoulder Elbow Surg.* 2014;23(4):456–462.
- 2. Bachman DR, Thaveepunsan S, Park S, Fitzsimmons JS, An KN, O'Driscoll SW. The effect of prosthetic radial head geometry on the distribution and magnitude of radiocapitellar joint contact pressures. *J Hand Surg Am.* 2015;40(2):281-288.
- 3. Doornberg JN, Linzel DS, Zurakowski D, Ring D. Reference points for radial head prosthesis size. *J Hand Surg Am.* 2006;31(1):53-57.

	Acumed® Anatomic Radial Head Solutions 2 Surgical Technique
Notes:	

Acumed Oregon Campus 5885 NE Cornelius Pass Road Hillsboro, OR 97124 Office: +1.888.627.9957 Office: +1.503.627.9957 Acumed Texas Campus 3885 Arapaho Road Addison, TX 75001 Office: +1.800.456.7779 Acumed Iberica C. Proción, 1 Edificio Oficor 28023 Madrid, Spain Office: +34.913.51.63.57 Acumed UK Huebner House The Fairground Andover Hampshire UK SP11 OQN Acumed ANZ Suite 4.01, 6 Eden Park Drive, Macquarie Park, NSW 2113 Australia Office: +61 2 8286 9900

ELB00-11-D | Effective: 2025/11 | © 2025 Acumed® LLC | US Patent No. 8652142 B2

These materials contain information about products that may or may not be available in any particular country or may be available under different trademarks in different countries. The products may be approved or cleared by governmental regulatory organizations for sale or use with different indications or restrictions in different countries. Products may not be approved for use in all countries. Nothing contained in these materials should be construed as a promotion or solicitation for any product or for the use of any product in a particular way that is not authorized under the laws and regulations of the country where the reader is located. Nothing in these materials should be construed as a representation or warranty as to the efficacy or quality of any product, nor the appropriateness of any product to treat any specific condition. Physicians may direct questions about the availability and use of the products described in these materials to their authorized Acumed distributor. Specific questions patients may have about the use of the products described in these materials or the appropriateness for their own conditions should be directed to their own physician.

Refer to the provided instructions for use for the complete indications, contraindications, warnings, and instructions for use.